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Risk Assessment for Banking Systems

Abstract

In this paper we suggest a new approach to risk assessment for banks. Rather

than looking at them individually we analyze risk at the level of the banking system.

Such a perspective is necessary because the complicated network of mutual credit

obligations can make the actual risk exposure of the entire system invisible at the

level of individual institutions. We apply our framework to a cross section of indi-

vidual bank data as they are usually collected at the central bank. Using standard

risk management techniques in combination with a network model of inter-bank

exposures we analyze the consequences of macro-economic shocks for bank insol-

vency risk. In particular we consider interest rate shocks, exchange rate and stock

market movements as well as shocks related to the business cycle. The feedback

between individual banks and potential domino effects from bank defaults are taken

explicitly into account. The model determines endogenously probabilities of bank

insolvencies, recovery rates and a decomposition of insolvency cases into defaults

that directly result from movements in risk factors and defaults that arise indirectly

as a consequence of contagion.

Keywords: Systemic Risk, Inter-bank Market, Financial Stability, Risk Manage-

ment

JEL-Classification Numbers: G21, C15, C81, E44
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1 Introduction

Measuring credit risk for banks is particularly challenging because of the importance of

financial linkages in the banking system. Direct knock on effects of corporate defaults on

other corporations through financial linkages will typically be fairly negligible. The situ-

ation is different for banking systems. The financial network of mutual credit obligations

stemming from liquidity management, re-financing, hedging, and security trading creates

a potential for contagious insolvencies or domino-effects on top of the common exposure

problems. To get a reliable assessment of credit risk for banking systems this network

structure has to be taken into account.

For regulators there are two major reasons why the correct measurement of credit risk

in the inter-bank market is of particular interest. First, like all other assets, inter-bank

loans have to be backed with equity capital. To determine the correct capital require-

ment, default as well as recovery rates have to be estimated. Under current regulations,

inter-bank loans have lower capital requirements than commercial loans, implicitly as-

suming that credit risk is lower in the inter-bank market. In our paper we suggest a new

methodology to estimate default and recovery rates. Second, regulators are concerned

about systemic risk in the banking sector and the possibility of a chain reaction of bank

defaults. Safeguarding the banking system against a systemic crises is one of the major

rationales for banking supervision and regulation1. We argue that monitoring systemic

risk requires an analysis at the level of the banking system rather than at the level of

individual banks. To implement this system perspective bank supervisors have to take

into account the risks stemming from financial linkages between banks.

In our paper we propose a new method to model the inter-bank-network explicitly.

We have access to a unique dataset provided by the Austrian Central Bank (OeNB) with

detailed information on inter-bank liabilities for a whole banking system. We also have

access to market risk exposures as well as detailed information on the banks’ loan portfolio

composition. Thus, we can estimate default frequencies and recovery rates for the banking

system and investigate the stability of the banking system with respect to systemic risk.

To our best knowledge this is the first attempt to utilize such a comprehensive dataset

for the risk analysis of an entire banking system.

1Greenspan (1997) notes on the FED’s agenda: ”Second only to its macro-stability responsibilities is
the central bank’s responsibility to use its authority and expertise to forestall financial crises (including
systemic disturbances in the banking system) and to manage such crises once they occur.”
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The general idea of the model is to combine traditional risk management analysis

with a network analysis of the inter-bank market. Economic risk scenarios (interest rate

shocks, FX movements, loan losses, stock price changes) are modeled by standard risk

management tools. All banks are exposed to the same shock simultaneously and the full

implications of such an economic shock on the banking system are then analyzed via the

network model. If a bank’s equity is impaired by a shock and the bank is not able to

fully repay its inter-bank loans the propagation of such a shock through the network of

mutual credit obligations can be studied. By this approach we are able to quantify the

potential for contagious defaults among banks and disentangle it from risk that directly

comes from market and non-inter-bank credit exposures. The network model also allows

us to compute endogenous default and recovery rates that are consistent with clearing

on the inter-bank market. Our approach does not rely on a history of observed bank

defaults. Apart from the problem that historical bank default rates are distorted because

many troubled banks might be saved by regulatory intervention, defaults due to a systemic

crisis are rarely observed. Our analysis explicitly addresses and quantifies the threat of a

systemic crisis which may be underestimated when relying only on a history of observed

bank defaults.

Comparing the probabilities of fundamental and contagious defaults, we find that for

our data set the banking system is fairly stable with respect to contagion. We find that

the mean default probability is 0.8% and the probability of contagious default for the

average bank is only 0.0062%. Thus, in our sample contagious defaults are relatively

unlikely. Even though contagious defaults occur rarely, there are scenarios with many

contagious defaults. In our simulation we find scenarios where contagion accounts for up

to 75% of all banks defaults. Contagion is a low probability-high impact event.

Previous simulation studies looking at inter-bank exposures such as Humphery (1986),

Angelini, Maresca, and Russo (1996), Furfine (2003), and Upper and Worms (2002) in-

vestigate contagious defaults that result from the hypothetical failure of some single in-

stitution. Such an analysis is able to capture the effect of idiosyncratic bank failures (e.g.

because of fraud). We take these studies a decisive step further by combining the anal-

ysis of inter-bank connections with a simultaneous study of the banking system’s overall

risk exposure. Thus, we analyze how adverse economic developments will affect individ-

ual institutions and how these shocks are propagated by financial linkages. Instead of

basing banking risk analysis on ad hoc individual institution failure scenarios we study

risk scenarios for the banking system which are created using standard risk management
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techniques. Our model can therefore be seen as an attempt to judge the risk exposure

of the system as a whole. A ’system perspective’ on banking supervision has for instance

been actively advocated by Hellwig (1997). Andrew Crockett (2000) has even coined a

new word - macro-prudential - to express the general philosophy of such an approach.2

The results of our analysis have policy implications for macro-prudential bank regula-

tion. First, we can see that the probability of contagious defaults depends on bankruptcy

costs in a non linear way. An efficient bankruptcy procedure is therefore of crucial im-

portance in the prevention of systemic risk. Second, our model allows us to estimate the

reserves for the lender of last resort that are necessary to prevent contagious defaults. In

this sense we can compute a ”value-at-risk” capital requirement for the regulator. We

find that surprisingly little funds have to be set aside to prevent contagious bank failures.

About 0.003% of the total assets in the banking system are sufficient to prevent conta-

gion in 99% of the scenarios. However, substantial financial effort is required to prevent

fundamental defaults. Here, the regulator needs to set aside 83 times more at the same

confidence level.

The rest of the paper is organized as follows. Section 2 describes the network model

of the inter-bank market and Section 3 illustrates the sample. The two components of

the simulation analysis, the structure of the inter-bank liabilities and the generation of

economic scenarios are described in Sections 4 and 5, respectively. Section 6 presents

the results of the simulation and driving forces of contagion are discussed in Section 7.

Finally Section 8 concludes.

2 A Network Model of the Inter-bank Market

The conceptual framework we use to describe the system of inter-bank credits has been

introduced to the literature by Eisenberg and Noe (2001). These authors study a cen-

tralized static clearing mechanism for a financial system with exogenous income positions

and a given structure of bilateral nominal liabilities. We build on this model and extend

it to include uncertainty.

Consider a finite set N = {1, ..., N} of banks. Each bank i ∈ N is characterized by

a given value ei net of inter-bank positions and nominal liabilities lij against other banks

2See also Borio (2002).
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j ∈ N in the system. The entire banking system is thus described by an N × N matrix

L and a vector e ∈ RN . We denote this system by the pair (L, e).

If for a given pair (L, e) the total net value of a bank becomes negative, the bank

is insolvent. In this case it is assumed that creditor banks are rationed proportionally.

Following Eisenberg and Noe (2001) we can formalize proportional rationing in case of

default as follows: Denote by d ∈ RN
+ the vector of total obligations of banks towards the

rest of the system i.e., we have di =
∑

j∈N lij. Proportional sharing of value in case of

insolvency is described by defining a new matrix Π ∈ [0, 1]N×N which is derived from L

by normalizing the entries by total obligations.

πij =

{
lij
di

if di > 0

0 otherwise
(1)

We describe a financial system as a tuple (Π, e, d) for which we define a so called

clearing payment vector p∗ that respects limited liability of banks and proportional sharing

in case of default. It denotes the total payments made by the banks under the clearing

mechanism.

Definition 1 A clearing payment vector for the system (Π, e, d) is a vector p∗ such that

for all i ∈ N

p∗i = min

[
di, max

(
N∑

j=1

πjip
∗
j + ei, 0

)]
(2)

Thus, the clearing payment vector directly gives us two important insights. First:

For a given structure of liabilities and bank values (Π, e, d) it tells us which banks in the

system are insolvent (p∗i < di). Second: It tells us the recovery rate for each defaulting

bank (
p∗i
di

).

To find a clearing payment vector we employ the fictitious default algorithm developed

by Eisenberg and Noe (2001). They prove that under mild regularity conditions a unique

clearing payment vector for (Π, e, d) always exists. These results extend - with slight

modifications - to our framework as well.3

From the solution of the clearing problem, we can gain additional economically impor-

tant information with respect to systemic stability. Default of bank i is called fundamental

3In Eisenberg and Noe (2001) the vector e is in RN
+ whereas in our case the vector is in RN .
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if bank i is not able to honor its promises under the assumptions that all other banks

honor their promises.4, i.e.

N∑
j=1

πjidj + ei − di < 0

If bank i defaults only because other banks are not able to keep their promises we call

this a contagious default, i.e.

N∑
j=1

πjidj + ei − di ≥ 0 but
N∑

j=1

πjip
∗
j + ei − di < 0

To use this model for risk analysis we extend it to an uncertainty framework by assum-

ing that e is a random variable.5 As there is no closed form solution for the distribution of

p∗ given the distribution of e we have to resort to a simulation approach. Each draw e is

called a scenario. By the theorem of Eisenberg and Noe (2001) we know that there exists

a (unique) clearing payment vector p∗(e) for each scenario. Thus from an ex-ante perspec-

tive we can assess expected default frequencies from inter-bank credits across scenarios

as well as the expected severity of losses from these defaults given we have an idea about

the distribution of e. Furthermore we are able to decompose insolvencies across scenarios

into fundamental and contagious defaults. A toy example illustrating the procedure is

given in Appendix A.

To pin down the distribution of e we choose the following route: assume that there are

two dates: t = 0 which is the observation date and t = 1 which is a hypothetical clearing

date where all inter-bank claims are settled according to the clearing mechanism. At

t = 0 the portfolio holdings of each bank are observed. The inter-bank related exposures

constitute the matrix L. The remaining portfolio holdings consist of loans, bonds, stocks

on the asset side and of liabilities to non banks on the liabilities side. These positions

are exposed to market and/or credit risk. We assume that the portfolio holdings remain

4Note that our setup implicitly contains a seniority structure of different debt claims of banks. By
interpreting ei as net value from all bank activities except the inter-bank business we assume that inter-
bank debt claims are junior to other claims, like depositors or bond holders. However inter-bank claims
have absolute priority in the sense that the owners of the bank get paid only after all debts have been
paid. In reality the legal situation is much more complicated and the seniority structure might very well
differ from the simple procedure we employ here. For our purpose it gives us a convenient simplification
that makes a rigorous analysis of inter-bank defaults tractable.

5One could also allow for a stochastic matrix L. In our analysis we take the nominal face value of
inter-bank debt as fixed.
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constant. Hence the value of the portfolio at t = 1 depends solely on the realization of

the relevant risk factors. To generate a scenario we draw a realization of these risk factors

from their joint distribution and revalue the portfolio to get the value of the portfolio e at

t = 1. Given this scenario the system is cleared and a clearing vector p∗(e) is determined.

An application of the network model for the assessment of credit risk from inter-bank

positions therefore requires mainly two things. First, we have to determine L from the

data. Second, we have to come up with a plausible framework to create meaningful risk

scenarios.

3 Data

In the following we give a description of our data. Our main sources are bank balance

sheet and supervisory data from the monthly filings (MAUS) to the Austrian Central

Bank (OeNB) and the database of the OeNB major loans register (Großkreditevidenz,

GKE). We use furthermore data on default frequencies in certain industry groups from

the Austrian rating agency Kreditschutzverband von 1870. Finally we use market data

from Data-stream.

3.1 Bank Data

Banks in Austria file reports on their business activities to the central bank on a monthly

basis. On top of balance sheet data MAUS contains a fairly extensive amount of other

data that are relevant for supervisory purposes. They include among others numbers on

capital adequacy statistics, off balance exposures, times to maturity and foreign exchange

exposures with respect to different currencies.

In our analysis we use a cross section from the MAUS database for September 2002

which we take as our observation period. We use these data to determine the matrix L

as well as the portfolio holdings that are not related to the inter-bank business. The data

on the inter-bank exposures is not as detailed as we need it. Yet a particular institutional

feature of the Austrian banking system helps us with the estimation of bilateral inter-

bank exposures. It has a sectoral organization for historic reasons.6 Three out of seven

6Banks belong to one of seven sectors: joint stock banks, savings banks, state mortgage banks, Raif-
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sectors have a multi tier structure with head institutions. Banks have to break down their

MAUS reports on claims and liabilities with other banks according to the different banking

sectors, head institution, central bank, and foreign banks. This practice of reporting on

balance inter-bank positions reveals some structure of the L matrix. From the viewpoint

of banking activities the sectoral organization is not particularly relevant any more. The

activities of the sectors differ only slightly and only a few banks are specialized in specific

lines of business. The 881 independent banks in our sample are to the largest extent

universal banks.

3.2 Credit Exposure Data

We can get a rough breakdown for the banks’ loan portfolio to non-banks by making use

of the major loans register of OeNB (GKE). This database contains all loans exceeding

a volume of 364, 000 Euro. For each bank we use the amount and number of corporate

loans, which are classified into 59 industry sectors according to the NACE standard plus

3 aggregate foreign non bank sectors grouped by industrialized countries, non industri-

alized countries, and Eastern Europe.7 Since only loans above a volume threshold are

reported we have to introduce domestic and foreign residual categories calculated from

the difference between the total loan volume numbers in the banks balance sheets and the

volume numbers of the major loan register.

Combining this information with data from the Austrian rating agency Kreditschutz-

verband von 1870 (KSV) we can estimate the riskiness of a loan in a certain industry.

The KSV database gives us time series of default rates for the different NACE branches.

From this statistics we estimate the average default frequency and its standard deviation

for each NACE branch. These data serve as our input to the credit risk model.

For the part of loans we can not allocate to industry sectors we have no default

statistics and no numbers of loans. To construct insolvency statistics for the residual

sector we take averages from the data that are available. To construct a number of loans

figure for the residual sector we assume the share of loan numbers in industry and in

the residual sector is proportional to the share of loan volume between these sectors. We

feisen banks, Volksbanken, building associations, savings and loan associations, and special purpose
banks.

7Because of the close economic links between Austria and Central and Eastern European Countries
we chose to define them as own category in the loan portfolio
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should note that the insolvency series is very short. The series are available semi-annually

beginning with January 1997.

3.3 Market Data

Some positions on the banks’ asset portfolios are subject to market risk. We collect daily

market data corresponding to the exposure categories over twelve years from September

1989 to September 2002 from Datastream. These data are used for the creation of sce-

narios. Specifically we collect exchange rates of USD, JPY, GBP and CHF to the Euro

(Austrian Schilling before 1999) to compute exchange rate risk. As we only have data

on domestic and international equity exposure we include the Austrian index ATX and

the MSCI-world index in our analysis. To account for interest rate risk, we compute zero

bond prices for maturities of three month, one, five and ten years, using zero rates in

EUR, USD, JPY, GBP and CHF.8

4 Estimating Interbank Liabilities from Partial In-

formation

If we want to apply the network model to our data we have the problem that they contain

only partial information about the inter-bank liability matrix L. The bank by bank record

of assets and liabilities with other banks gives us the column and row sums of the matrix

L. Furthermore we know some structural information. For instance we know that the

diagonal of L must contain only zeros since banks do not have claims and liabilities against

themselves. We furthermore exploit the sectoral structure of the Austrian banking system

to determine many of the entries in L exactly. In this way we can pin down 72% of all

entries of the matrix L. Therefore by exploiting the sectoral information, we actually

know a major part of L from our data.

We estimate the remaining 28% of the entries of L by optimally exploiting the in-

formation we have. Our ignorance about the unknown parts of the matrix should be

reflected in the fact that all these entries are treated uniformly in the reconstruction pro-

cess. The procedure should be furthermore adaptable to include any new information that

8Sometimes a zero bond series is not available for the length of the period we need for our exercise.
In these cases we took swap rates.
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might get available in the process of data collection. In the following we use a procedure

that formulates the reconstruction of the unknown parts of the L matrix as an entropy

optimization problem.

What this procedure does can intuitively be explained as follows: It finds a matrix that

treats all entries of the matrix as balanced as possible and that fulfils all the constraints

we know of. This can be formulated as minimizing a suitable measure of distance between

the estimated matrix and a matrix that reflects our a priori knowledge on large parts of

bilateral exposures. It turns out that the so called cross entropy measure is a suitable

concept for this task (see Fang, Rajasekra, and Tsao (1997) or Blien and Graef (1997)).

For a formal description we refer to Appendix B.

Due to data inconsistencies the application of entropy optimization is not straightfor-

ward. For instance the liabilities of all banks in sector k against all banks in sector l do

typically not equal the claims of all banks in sector l against all banks in sector k.9 We

propose a workaround to this problem which is described in detail in Appendix B.

We see two main advantages of this method to deal with the incomplete information

problem raised by our data. First the method is fairly flexible with respect to the inclu-

sion of additional information we might get from different sources. Second, there exist

computational procedures that are easy to implement and that can deal efficiently with

very large problems (see Fang, Rajasekra, and Tsao (1997)). Thus problems similar to

ours can be solved efficiently and quickly on an ordinary personal computer, even for very

large banking systems.

5 Creating Scenarios

Our model of the banking sector uses different scenarios to model uncertainty. In each

scenario banks face gains and losses from FX and interest rate changes as well as from

equity price changes and losses from loans to non-banks. Some banks may fail. This

possibly causes subsequent failures of other banks, as it is modeled in our network clearing

framework. Hence the credit risk in the inter-bank network is modeled endogenously while

all other risks are reflected in the position ei. The perspective taken in our analysis is to

ask, what are the consequences of different scenarios for ei on the whole banking system.

9Some of the inconsistencies seem to suggest that the banks assign some of their counterparties to the
wrong sectors.
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Figure 1. The figure shows the basic structure of the model. Banks are exposed to shocks
from credit risk and market risk according to their respective exposures. Due to these economic
shocks some banks may default. Inter-bank credit risk is endogenously explained by the network
model. The clearing of the inter-bank market determines the solvency of other banks and defines
endogenous default probabilities for banks as well as the respective recovery rates.

Figure 1 shows the basic structure of our model.

We choose a standard risk management framework to model the shocks to banks. To

simulate scenario losses that are due to exposures to market risk we conduct a historical

simulation where we expose all banks s imultaneously to the same realizations of the risk

factors. To capture losses from loans to non-banks we use a credit risk model.

Table 1 shows, which balance sheet items are included in our analysis and how the

risk exposure is modeled. Market risk (stock price changes, interest rate movements and

FX rate shifts) are captured by a historical simulation approach (HS) for all items except

other assets and other liabilities, which includes long term major equity stakes in not-

listed companies, non financial assets like property and IT-equipment and cash on the

12



Interest rate/ Credit risk FX risk
Assets stock price risk
short term government
bonds and receivables Yes (HS) No Yes (HS)
loans to other banks Yes (HS) endogenous by clearing Yes (HS)
loans to non banks Yes (HS) credit risk model Yes (HS)
bonds Yes (HS) no as mostly government Yes (HS)
stock holdings Yes (HS) No Yes (HS)
other assets No No No
Liabilities
liabilities other banks Yes (HS) endogenous by clearing Yes (HS)
liabilities non banks Yes (HS) No Yes (HS)
securitized liabilities Yes (HS) No Yes (HS)
other liabilities No No No

Table 1. The table shows how risk of the different balance sheet positions is covered in our
scenarios. HS is a shortcut for historic simulation.

asset side and equity capital and provisions on the liability side. Credit losses from non-

banks are modeled via a credit risk model. The credit risk from bonds is not included

since most banks hold only government bonds. The credit risk in the inter-bank market

is determined endogenously.

5.1 Market Risk: Historical Simulation

We use a historical simulation approach as it is documented in the standard risk man-

agement literature (Jorion (2000)) to assess the market risk of the banks in our system.

This methodology has the advantage that we do not have to specify a certain parametric

distribution for our returns. Instead we can use the empirical distribution of past observed

returns and thus capture also extreme changes in market risk factors. By this procedure

we capture the joint distribution of the market risk factors and thus take correlation

structures between interest rates, stock markets and FX markets into account.

To estimate shocks on bank capital stemming from market risk, we include positions

in foreign currency, equity, and interest rate sensitive instruments. For each bank we

collect foreign exchange exposures for USD, JPY, GBP, and CHF only as no bank in our

sample has open positions of more than 1% of total assets in any other currency. From

the MAUS database we get exposures to foreign and domestic stocks, which is equal to

13



the market value of the net position held in these categories. The exposure to interest rate

risk can not be read directly from the banks’ monthly reports. We have information on

net positions in all currencies combined for different maturity buckets (up to 3 month but

not callable, 3 month to 1 year, 1 to 5 years, more than 5 years). These given maturity

bands allow only a quite coarse assessment of interest rate risk.

Nevertheless the available data allow us to estimate the impact of changes in the term

structure of interest rates. To get an interest rate exposure for each of the five currencies

EUR, USD, JPY, GBP and CHF we split the aggregate exposure according to the relative

weight of foreign currency assets in total assets. This procedure gives us a vector of 26

exposures, 4 FX, 2 equity, and 20 interest rate, for each bank. Thus we get a N × 26

matrix of market risk exposure.

We collect daily market prices over 3, 220 trading days for the risk factors as described

in subsection 3.3. From the daily prices of the 26 risk factors we compute daily returns. We

re-scale these to monthly returns assuming twenty trading days and construct a 26×3219

matrix R of monthly returns.

For the historical simulation we draw 10, 000 scenarios from the empirical distribution

of returns. To illustrate the procedure let Rs be one such scenario, i.e. a column vector

from the matrix R. Then the profits and losses that arise from a change in the risk factors

as specified by the scenario are simply given by multiplying them with the respective

exposures. Let the exposures that are directly affected by the risk factors in the historical

simulation be denoted by a. The vector aRs contains then the profits or losses each bank

realizes under the scenario s. Repeating the procedure for all 10, 000 scenarios, we get a

distribution of profits and losses due to market risk.

5.2 Credit Risk: Calculating Loan Loss Distributions

For the modeling of loan losses we employ one of the standard modern credit risk models,

CreditRisk+.10 While CreditRisk+ is designed to deal with a single loan portfolio we have

to deal with a system of portfolios since we have to consider all banks simultaneously. For

the purpose of our analysis the correlation between loan losses across banks is important.

10A recent overview on different standard approaches to model credit risk is Crouhy, Galai, and Mark
(2000). CreditRisk+ is a trademark of Credit Suisse Financial Products (CSFP). It is described in detail
in CSFP Credit Suisse (1997)
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The adaptation of the model to deal with such a system of loan portfolios turns out to

be straightforward.

The loan loss distribution in the CreditRisk+ model is driven by two sources of un-

certainty. First, economic uncertainty affects all loans. This models business cycle effects

on average industry defaults. The idea is that default frequencies increase in a recession

and decrease in booms. Second, for a given economic shock defaults are assumed to be

conditionally independent. The conditional loss distribution can be derived analytically

using an iterative algorithm. Assumptions about recovery rates can be imposed at var-

ious sophistication levels. For our purposes it is sufficient to work with a very simple

assumption of a fixed recovery rate. Throughout our calculations we assume a recovery

rate of corporate loans of 50%

We construct the bank loan portfolios by decomposing the bank balance sheet informa-

tion on loans to non banks into volume and number of loans in different industry sectors

according to the information from the major loan register. The rest is summarized in a

residual position as described in Section 3. Using the KSV insolvency statistics for each of

the 59 industry branches and the three foreign sectors and the proxy insolvency statistics

for the residual sectors, we can assign an unconditional expected default frequency and

a standard deviation of this frequency to each loan. In line with the CreditRisk+ speci-

fication, we aggregate these numbers for each bank. The unconditional expected default

frequency gives us information on the risk of the bank’s loan portfolio. The standard de-

viation indicates how much default rates may vary over time and thus model the exposure

to the economic shock.

Figure 2 illustrates the procedure for scenario generation in our extended CreditRisk+

framework. We follow a four step procedure to generate scenarios for the whole banking

system.11 In step one of the simulation we compute the distribution of each bank’s average

default frequencies.12 Then we draw for each bank a realization from the bank’s individual

distribution of average default frequencies. To model this as an economy wide shock, we

draw the same quantile for all banks in the banking system (step 2). Given this realization

of the average default frequency, defaults are assumed to be conditionally independent.

We can then calculate a conditional loss distribution for each bank (step 3). Finally (step

11For a single loan portfolio these four stages can be combined and the unconditional loss distribution
can be derived. Our model is identical to the CreditRisk+ model in this case.

12In CreditRisk+ the distribution of the expected default frequency is specified as a gamma distribution.
The parameters of the gamma distribution can be determined by the average number of defaults in the
loan portfolio and its standard deviation.
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Figure 2. Computation of Credit loss scenarios following an extended CreditRisk+ model.
Based on the composition of the individual bank’s loan portfolio we estimate the distribution of
the mean default rate for each bank (step 1). Reflecting the idea of a common economic shock we
draw the same quantile from each bank’s mean default rate distribution (step 2). Conditional on
this draw, we can compute each bank’s individual loan loss distribution (step 3). The scenario
loan losses are then drawn independently for each bank to reflect an idiosyncratic shock (step
4). 10,000 scenarios are drawn repeating steps 2 to 4.

4) we draw loan losses.13

5.3 Combining Market Risk, Credit Risk, and the Network

Model

The credit losses across scenarios are combined with the results of the historic simulations

to create ei for each bank. By the network model the inter-bank payments for each

scenario ei are then calculated (see Figure 1). Thus we get endogenously a distribution

of clearing vectors, default frequencies, recovery rates and statistics on the decomposition

13We apply standard variance reduction techniques in our Monte Carlo simulation. We go through
the quantiles of the distribution of average default frequencies at a step length of 0.01. Thus, we draw
hundred economy wide shocks from each of which we draw 100 loan loss scenarios, yielding a total number
of 10,000 scenarios.
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into fundamental and contagious defaults.

6 Results

The network model generates a distribution of clearing vectors p∗ and therefore also a

distribution of insolvencies for each individual bank across scenarios: Whenever a com-

ponent in p∗ is smaller than the corresponding component in d the bank has not been

able to honor its inter-bank promises. The relative frequency of default across scenarios

is then interpreted as a default probability.

To discuss the effects of risk scenarios on the banking system it is useful to impose

additional assumptions reflecting the time horizon we have in mind. Although techni-

cally the network model works with a fixed future date at which all claims are cleared

simultaneously we can model time horizons by imposing assumptions on details of the

clearing process. We can model a short run perspective by assuming that there will be

no inter-bank payments after netting following a bank default. In contrast we model a

long run perspective by assuming that the residual value of an insolvent bank can be fully

transferred to the creditor institutions up to some bankruptcy costs according to the rules

of the clearing mechanism.

Clearly both situations are of interest for a regulator. The short run assumptions help

to estimate the amounts that might have to be ready immediately for emergency crises

intervention to prevent wide spread contagion of defaults. The long run assumptions

can then give an estimate of the eventual costs of a shock to the system. Against these

hypothetical situations crises intervention decisions can be evaluated.

6.1 Frequency of Default

Panel A of Table 2 shows the default probabilities for the short run. We see the 10 and

90 percent quantiles as well as the median of the distribution of individual bank default

probabilities grouped by banks size. The last line shows these numbers for the entire

banking system. Banks are sorted into three groups by the size of total assets. Banks

that are defined as small if they are below the first quartile of the total assets distribution.

Banks between the first quartile and the 90% decile are defined as medium whereas banks
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Panel A: Short Run Scenario Panel B: Long Run Scenario
10%-Quant. Median 90%-Quant. 10%-Quant. Median 90%-Quant.

Small 0.00% 0.44% 4.99% 0.00% 0.40% 4.92%
Medium 0.00% 0.12% 1.98% 0.00% 0.06% 1.66%
Large 0.00% 0.07% 1.31% 0.00% 0.00% 0.09%
All banks 0.00% 0.16% 2.91% 0.00% 0.10% 2.60%

Table 2. Default probabilities of individual banks in the short run and long run, grouped
by quantiles of size of total assets and for the entire banking system. Small banks are defined
to be in the first quartile of the total asset distribution; medium banks are defined as banks
between the lower quartile and the 90% quantile of the total asset distribution. Large banks are
defined as institutions in the top decile of the total asset distribution. The short run analysis
is under the assumption that insolvent banks pay nothing in the inter-bank market; in the long
run the remaining value of the bank is proportionally shared among claimants assuming zero
bankruptcy costs.

above the 90% decile are defined as large.

The banking system’s overall stability as measured by the median default probability

across the entire banking system is both in the short run and in the long run satisfactory.

The median default probability is way below one percent in both cases. In the short

run (Panel A of Table 2) the median number of failure scenarios measured across all the

banks in the system is 16 out of 10, 000. In the long run payments can be made above the

payments that come from the netting of claims. If the value of an insolvent institution

can be transferred to the creditor banks clearly the distribution of default probabilities

across banks changes. The results are reported in Panel B of Table 2. We see that the

default probability for small and medium sized banks decreases in the long run scenario

only slightly. The mean default probability (not shown in the table) in the long run is

0.8%. The picture is different for large banks where the decrease is rather pronounced.

This finding remains more or less unchanged if one introduces the assumption that a

certain amount of resources is lost during a bankruptcy procedure. For instance James

(1991) estimates these costs at 10% of total assets. With this assumption the median

default probability in the long run rises to 0.12% for the entire banking system. It raises

the median default probability of medium sized banks to 0.08% and leaves it unchanged

for the small banks.

The default risk seems to decrease with bank size. This picture can be refined if we

group banks by deciles of the size distribution of total assets and plot the share of banks

in theses deciles in the number of total defaults across banks and scenarios (Figure 3
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Figure 3. The figure shows the share in total defaults of banks in each decile of the total asset
distribution (long run case). Small banks account for a large fraction of total defaults. Banks
in the fourth, fifth, and sixth decile account for a less than proportional share of defaults.

for the long run case). The relation between bank size and default probability is now

more ambiguous. The default probability is high for small banks (the lowest three deciles

account for approximately 50% of all defaults). It decreases sharply for the next three

deciles and than increases again.

6.2 Recovery Rates

The model allows us to give an estimate of the value recoverable from defaulted counter-

parties in the inter-bank market. This information is interesting in its own right because

relatively little is known about recoveries from inter-bank credits. This estimate is of

course only relevant for the long run since our assumptions imply that the recovery rate

in the short run is zero apart from netting.

The following numbers refer to the long run assumption that the residual value of an

insolvent institution is fully transferred to the creditors. In each scenario where bank i

defaults a recovery rate is calculated by dividing p∗i - the amount paid by bank i under
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Size 10%-Quantile Median 90%-Quantile
Small 0.00% 23.02% 81.06%
Medium 20.17% 76.36% 95.96%
Large 10.86% 89.84% 98.16%
Banking system 0.00% 65.83% 95.54%

Table 3. Recovery rates from inter-bank exposures in the long run grouped by quantiles of
size of total assets and for the entire banking system. Small Banks are defined to be institutions
in the first quartile of the total asset distribution; large banks are defined as institutions in the
top decile of the total asset distribution.

the clearing mechanism - by di - the amount initially promised by bank i. These rates for

bank i are averaged across scenarios where bank i defaults. The values of recovery rates

are reported in Table 3.14

These recovery rates are implied by the network model. In practice recovery rates

might be higher because some of the exposures will be collateralized. We have included

no assumptions about collateral since we have no appropriate information. What is re-

markable in these numbers is that the median recovery rate for the large institutions is

high. This indicates that if they fail, the losses for the counterparties will be moderate.

The median recovery rate taken over the entire banking system is 66%. It should also

be noted that these recovery rates drop sharply if we deduct bankruptcy costs of 10%

of total assets as estimated by James (1991). In this case the median recovery rate goes

down to zero and reaches a value of about 46% in the 90% quantile of the recovery rate

distribution across the entire banking system.

6.3 Systemic stability: Fundamental versus Contagious Defaults

Let us now turn to the decomposition into fundamental and contagious defaults. This

decomposition is particularly interesting from the viewpoint of systemic stability. It is

also interesting to get an idea about contagion of bank defaults from a real dataset since

the empirical importance of domino effects in banking has been controversial in the litera-

ture.15 Bank defaults may be driven by large exposures to market and credit risk or from

an inadequate equity base (fundamental default). Bank defaults may however also be

initiated by contagion: as a consequence of a chain reaction of other bank failures in the

14To calculate the recovery rates we clear the system without netting. In the case of clearing with
netting we could clearly not simply calculate recovery rates as p∗i /di.

15See in particular the detailed discussion in Kaufman (1994).
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Short Run Long Run
Fundamental Contagious Total Fundamental Contagious Total

0-10 87.03% 1.15% 88.18% 88.17% 0.01% 88.18%
11-20 3.09% 1.36% 4.45% 4.43% 0.02% 4.45%
21-30 1.54% 0.69% 2.23% 2.20% 0.03% 2.23%
31-40 0.80% 0.66% 1.46% 1.36% 0.10% 1.46%
41-50 0.33% 0.63% 0.96% 0.90% 0.06% 0.96%
51-60 0.20% 0.42% 0.62% 0.52% 0.10% 0.62%
61-70 0.09% 0.33% 0.42% 0.36% 0.06% 0.42%
71-80 0.04% 0.29% 0.33% 0.20% 0.13% 0.33%
81-90 0.02% 0.32% 0.34% 0.19% 0.15% 0.34%
91-100 0.00% 0.19% 0.19% 0.11% 0.08% 0.19%
more 0.07% 0.75% 0.82% 0.21% 0.61% 0.82%
Total 93.21% 6.79% 100.00% 98.65% 1.35% 100.00%

Table 4. Probabilities of fundamental and contagious defaults in the short run and in the
long run. A fundamental default is due to the losses arising from exposures to market risk
and credit risk to the corporate sector, while a contagious default is triggered by the default of
another bank that cannot fulfill its promises in the inter-bank market. The short run analysis
is under the assumption that insolvent banks pay nothing in the inter-bank market, whereas
zero bankruptcy costs are assumed in the long run scenario. Banks are grouped by fundamental
defaults. The probability that only fundamental defaults occur is shown as well as the probability
that fundamental and contagious defaults are observed.

system (contagious default). These risks are not visible by a regulatory setup that focuses

on individual banks’ ”soundness”. Table 4 summarizes the probabilities of fundamental

and contagious defaults in our data.

We list the probabilities of 0− 10 banks defaulting fundamentally and the probability

of banks defaulting contagiously as a consequence of this event. The next row shows

similar information for the event that 11−20 banks get insolvent and the probability that

other banks default contagiously as a consequence of this etc. We see that in the short

run the incidence of contagion can become non-negligible. Of all default scenarios almost

7% can be classified as scenarios with contagious defaults.

The incidence of contagious default in the long run scenario roughly decreases by a

factor of 5. This shows that the long run picture consists predominantly of scenarios

with fundamental defaults and that domino effects play not a particularly prominent role.

However we have seen that in the short run the incidence of contagion can reach fairly

high levels and might give reasons for concern. We can therefore not conclude from our

analysis that the incidence of contagious default is a quantity that might be safely ignored

for all practical purposes.
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Panel A: Short Run Scenario Panel B: Long Run Scenario
10%-Quant. Median 90%-Quant. 10%-Quant. Median 90%-Quant.

Small 0.00% 0.03% 0.15% 0.00% 0.00% 0.03%
Medium 0.00% 0.03% 0.12% 0.00% 0.00% 0.01%
Large 0.00% 0.02% 0.26% 0.00% 0.00% 0.04%
All banks 0.00% 0.03% 0.13% 0.00% 0.00% 0.01%

Table 5. Probabilities of contagious defaults, i.e., defaults because other banks do not fully
honor their promises. Panel A is under the assumption that defaulted banks pay nothing in
the inter-bank market, whereas zero bankruptcy costs are assumed in Panel B. Large and small
banks are in the top decile and the lowest quartile of the total asset distribution, respectively.

We can also directly calculate the probability of contagious defaults along the lines of

Table 2. The numbers are given in Table 5. The probability of a contagious default of

an individual bank in the long run is remarkably low (90% of the banks face a contagious

default in at most 1 scenario out of 10, 000). The mean contagious default probability (not

shown in the table) is only 0.0062%. In the short run this probability is slightly higher.

However contrary to the fact that the total default probability is lower for large banks

than it is for small sized banks we find that large banks face more contagious defaults

than small banks do.

Given the number of total defaults several percentiles of the ratio of contagious defaults

to total defaults are given in Table 6. In the short run case contagious defaults can

account for up to 3/4 of all defaults, i.e. there exists a scenario where 3/4 of the defaults

are contagious. Although this is not a representative scenario (the median of the fraction

is in a range of 0% to 14% depending on the number of total defaults) it is important

in terms of the stability of the system. It indicates that despite the fact that contagion

is a rare event there are situations where it accounts for a major part of defaults. The

results in Panel A of Table 6 confirm the intuition that the fraction of contagious defaults

increases in the number of total defaults. As we have already seen before contagion is a

minor problem in the long run case (Panel B of Table 6).

6.4 Estimating the Costs of Crises Intervention

We can use the model to estimate the costs of crises intervention by asking how much

funds would have to be available to avoid contagious defaults or even fundamental de-

faults. These numbers can be estimated by using the network model. In the case of
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fundamental defaults we have to calculate the amounts needed to make the value of each

bank non negative across scenarios in the first round of the fictitious default algorithm.

For contagious default we have to do the same calculation for rounds beyond round zero.

The aggregate amount of these funds can be analyzed by looking at the percentiles of the

intervention cost distribution across scenarios calculated in the way. Table 7 reports our

results for the short run.

What is remarkable here is that the amounts that have to be ready to prevent only

contagious defaults are not very big. For the data set analyzed here the amount is roughly

50 million Euro. This is roughly 0.1% of the banking system’s total assets. We have seen

before that the share of scenarios where no contagious defaults occur is more than 90%.

Thus the fundamental defaults play a more prominent role. A fundamental default may

give rise to concerns from the side of the regulator as well. If we would also ask how

much we should stand ready to inject into the system to avoid fundamental defaults we

get number that are larger by an order of 100 or more. In the long run the costs to avoid

contagious defaults decline sharply.

7 Discussion

7.1 Contagion and Bankruptcy Costs

In the preceding analysis we have seen that contagious defaults turned out to differ quite

substantially between the short run and the long run simulation. We have distinguished

both simulations basically by assumptions on possible recoveries from defaulted coun-

terparties. This raises the question on how contagion depends exactly on the amount

of bankruptcy costs. In the following we use our data to find the function that maps

bankruptcy costs measured as percent of the value of total assets into contagious de-

faults.

Figure 4 shows the impact of bankruptcy costs on contagious defaults. For each level

of bankruptcy costs we compute the distribution of contagious defaults across scenarios.

The graph shows the tail of the distribution, i.e., how many banks fail in the bad scenarios.

Efficient bankruptcy resolution is crucial to limit contagion. We see little contagion for

low bankruptcy costs and very high contagion for levels above 30%. The jump in the

maximum number of contagious defaults clearly shows that financial stability can be
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Panel A:Short Run Scenario:
Prob. of State Minimum 10%-Quantile Median 90%-Quantile Maximum

0 to 10 87.14% 0.00% 0.00% 0.00% 0.00% 50.00%
11 to 20 4.80% 0.00% 0.00% 0.00% 9.09% 20.00%
21 to 30 1.91% 0.00% 0.00% 0.00% 3.70% 65.38%
31 to 40 1.60% 0.00% 0.00% 2.63% 44.12% 63.33%
41 to 50 1.45% 0.00% 0.00% 2.44% 32.50% 40.00%
51 to 60 0.63% 0.00% 0.00% 1.96% 25.09% 30.77%
61 to 70 0.55% 0.00% 0.00% 2.99% 21.54% 25.37%
71 to 80 0.27% 0.00% 0.00% 13.51% 22.54% 23.61%
81 to 90 0.25% 0.00% 1.16% 11.11% 17.24% 20.48%
91 to 100 0.15% 1.02% 1.09% 4.35% 15.46% 16.84%
More 1.25% 0.00% 1.17% 13.33% 41.54% 73.30%
All banks 100.00% 0.00% 0.00% 0.00% 0.00% 73.30%

Panel B: Long Run Scenario
Prob. of State Minimum 10%-Quantile Median 90%-Quantile Maximum

0 to 10 87.40% 0.00% 0.00% 0.00% 0.00% 12.50%
11 to 20 4.87% 0.00% 0.00% 0.00% 0.00% 7.69%
21 to 30 2.44% 0.00% 0.00% 0.00% 0.00% 3.57%
31 to 40 1.44% 0.00% 0.00% 0.00% 0.00% 3.13%
41 to 50 1.04% 0.00% 0.00% 0.00% 0.00% 4.08%
51 to 60 0.67% 0.00% 0.00% 0.00% 1.77% 2.00%
61 to 70 0.42% 0.00% 0.00% 0.00% 1.54% 1.67%
71 to 80 0.33% 0.00% 0.00% 0.00% 1.37% 2.82%
81 to 90 0.34% 0.00% 0.00% 0.00% 2.36% 3.53%
91 to 100 0.22% 0.00% 0.00% 0.00% 2.16% 3.03%
More 0.83% 0.00% 0.00% 1.57% 7.53% 10.07%
All banks 100.00% 0.00% 0.00% 0.00% 0.00% 12.50%

Table 6. Probability of bank defaults and amount of contagion. Scenarios are grouped by total
bank defaults (fundamental and contagious). For each group the probability of that state is
shown as well as quantiles of the fraction of contagious defaults. In the long run analysis we
assume zero bankruptcy costs, whereas in the short term scenario insolvent banks are assumed
to default completely and pay nothing.

Quantiles 90% 95% 99% 100%
Fundamental Default 61.82 194.85 895.5133 5666.89
Contagious Default Short Run 0 0 1.83 46.44
Contagious Default Long Run 0 0 0.12 20.01

Table 7. Costs of avoiding fundamental and contagious defaults: In the first row we give
estimates for the 90, 95, 99 and 100 percentile of the avoidance cost distribution across scenarios
for fundamental defaults. The second row shows the amounts necessary to avert contagious
defaults once fundamental defaults have occurred. Costs are in million Euro.
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Figure 4. Number of contagious defaults and bankruptcy costs. The graphs show the maxi-
mum number of contagious defaults as well as the 99.5%, 99%, 98%, and 97% quantiles of the
distribution for different bankruptcy costs. Bankruptcy costs are defined as percentage of total
assets lost in case of bankruptcy.

enhanced when bankruptcy costs are kept very low. This highlights the importance of

a lender of last resort and an efficient crisis resolution policy. When regulators are able

to support efficient bankruptcy resolutions they can effectively limit contagion in a crisis

scenario.

7.2 The Role of the Network Structure

In the theoretical literature on contagion and banking crises Allen and Gale (2000) have

suggested that the pattern of linkages in the inter-bank market is critical for financial

fragility. In particular they contrast two kinds of inter-bank market structures, which

are called complete and incomplete. A complete structure refers to a network topology

of the inter-bank market where all banks are connected with each other by claims or

liabilities. An incomplete structure is one in which banks are only partially connected.

Allen and Gale (2000) study an example of an incomplete structure where banks hold

inter-bank deposits among each other. In a liquidity insurance framework they analyze

25



the risk allocation and fragility properties of a banking system with four banks which

face different liquidity shocks but can enter risk sharing agreements to achieve improved

allocations of liquidity contrary to a situation without an inter-bank market. The authors

show that the fact whether the inter-bank market structure is complete or incomplete is

decisive whether an aggregate liquidity shock leads to contagion and financial crises or not.

They conclude that a complete structure is more robust than an incomplete structure.

A complete structure leads to a better distribution of the risk of an aggregate liquidity

shock and does therefore not create a necessity of costly liquidation of long term assets.

An incomplete structure may however lead to large effects of an aggregate liquidity shock

because banks can only turn on their neighboring region for liquidity and may enforce

premature liquidation with a knock on effect to other regions.

The analysis in Allen and Gale (2000) raises the question whether a complete inter-

bank market structure can in general make a banking system more resilient to aggregate

shocks. We can use our framework to provide some empirical evidence. If we construct

the inter-bank matrix L by just imposing the row sum and column sum constraints on

our data and use a prior liability matrix that gives equal weight to all matrix entries

except the diagonal (where entries are zero) the entropy maximization procedure will

induce exactly a complete structure as suggested by Allen and Gale (2000). The initial

structure which exploits the structural information about the multi-tier architecture of

the Austrian banking system can be characterized as an incomplete market structure.

The simulation results with the complete structure and the long run scenario are re-

ported in Table 8. Analogous to Table 4, we group bank failure scenarios by the number of

fundamental defaults. For each group, we compute the probability that only fundamental

and that fundamental and contagious defaults occur.

What is striking here is that contrary to the example discussed in Allen and Gale

(2000) the complete market structure in our case leads to an increase in scenarios with

contagious defaults by roughly three percentage points. We think that the conclusion

we can draw from this exercise is that the classification into complete and incomplete

structures as suggested by Allen and Gale (2000) does not give the whole story if we want

to understand the role played by the network topology of inter-bank linkages for financial

fragility of a banking system.
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Fundamental Contagious Total
0-10 87.93% 0.25% 88.18%
11-20 4.22% 0.23% 4.45%
21-30 1.68% 0.55% 2.23%
31-40 0.95% 0.51% 1.46%
41-50 0.60% 0.36% 0.96%
51-60 0.28% 0.34% 0.62%
61-70 0.07% 0.35% 0.42%
71-80 0.03% 0.30% 0.33%
81-90 0.01% 0.33% 0.34%
91-100 0.00% 0.19% 0.19%
more 0.03% 0.79% 0.82%
Total 95.80% 4.20% 100.00%

Table 8. Probabilities of fundamental and contagious defaults assuming zero bankruptcy costs
and a complete market structure, i.e. banks diversify their inter-bank business as much as
possible. Bank failure scenarios are grouped by the number of fundamental defaults. For each
group, the probability that only fundamental and that fundamental and contagious defaults
occur are shown. A fundamental default is due to the losses arising from exposures to market
risk and credit risk to the corporate sector, while a contagious default is triggered by the default
of another bank who cannot fulfill its promises in the inter-bank market.

8 Conclusions

In this paper we have developed a new framework for the risk assessment of a banking

system. The innovation is that we judge risk at the level of the entire banking system

rather than at the level of an individual institution.

Conceptually it is possible to take this perspective by a systematic analysis of the

impact of a set of macroeconomic risk factors on banks in combination with a network

model of mutual credit relations. To be able to employ the framework empirically it

is designed in a way such that the data required as input is available at the regulatory

authority. This is exactly the institution for which an assessment method like the one

suggested here is of crucial interest.

Since our method is a first step, there are certainly many issues that have to be

further discussed to get a firm judgment how much we can trust assessments generated

with the help of our model. We want to point out at this stage, what we see as the main

advantages of our general approach. First the system perspective can uncover exposures

to aggregate risk that are invisible for banking supervision relying on the assessment of

single institutions only. It disentangles the risk that comes from fundamental shocks from
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the risks that come from the failure of other banks. As we gain experience with the model

for more cases and maybe also for other banking systems this might create a possibility

to qualify the actual importance of contagion effects that have received so much attention

in the theoretical debate. Second we think that our framework can redirect the discussion

about systemic risk in banking from continuous refinements and extensions of capital

adequacy regulation for individual banks to the crucial issue of how much risk is actually

borne by the banking system. In this discussion the framework might be useful to get a

clearer picture of actual risk exposure because it allows for thought experiments. Third

the model does not rely on a sophisticated theory of economic behavior. In fact the model

is really a tool to read data in a particular way. All it does is to make the consequences of

a given liability and asset structure in combination with realistic shock scenarios visible

in terms of implied technical insolvencies of institutions. We think that in this context

this feature is a definitive advantage because it makes it easier to validate the model.

Fourth the model is designed to exploit existing data sources. Although these sources are

not ideal our approach shows that we can start to think about financial stability at the

system level with existing data already.

We hope that our ideas will turn out useful for regulators and central bankers by

offering a practicable way to read the data they have at their very doorsteps in the light

of aggregate risk exposure of the banking system. We therefore hope to have given a

perspective of how a ’macroprudential’ approach to banking supervision could proceed.

We also do hope, however, that our paper turns out to be interesting for theoretical work

in financial stability and banking as well and that the questions it raises will contribute in

a fruitful way to the debate about the system approach to banking supervision and risk

assessment.
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A A Toy Example

Let us illustrate the concepts introduced in section 2 by an example: Consider a system
with three banks. The inter-bank liability structure is described by the matrix

L =

 0 0 2
3 0 1
3 1 0

 (3)

Bank 3 has - for instance - liabilities of 3 with bank 1 and liabilities of 1 with bank
2. It has of course no liabilities with itself. The total inter-bank liabilities for each bank
in the system is given by a vector d = (2, 4, 4). With actual balance sheet data the
components of the vector d correspond to the position due to banks for bank 1, 2 and
3 respectively. If we alternatively look at the column sum of L we get the position due
from banks. Assume that we can summarize the net wealth of the banks that is generated
from all other activities by a vector e = (1, 1, 1). This vector corresponds to the difference
of asset positions such as bonds, loans and stock holdings and liability positions such as
deposits and securitized liabilities.

The normalized liability matrix Π is given by

Π =

 0 0 1
3
4

0 1
4

3
4

1
4

0


Applying the fictitious default algorithm to the situation where e = (1, 1, 1) yields a

clearing payment vector of p∗ = (2, 28
15

, 52
15

). It is easy to check that bank 2 is fundamentally
insolvent whereas bank 3 is “dragged into insolvency“ by the default of bank 2.

Suppose e is uncertain whereas L is deterministic. Assume that we draw two realiza-
tions from the distribution of e. Let these two scenarios be the vectors e1 = (1, 1, 1) and
e2 = (1, 3, 2). Given the matrix L, in the first scenario banks 2 and 3 default whereas in
the second scenario no bank is insolvent. The clearing payment vectors and the network
structure for this example are illustrated in Figure 5.

The ex-ante the expected number of bank defaults, of fundamental and contagious
defaults as well as expected average recovery rates from inter-bank credits are the averages
over the scenarios.
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Figure 5. Graphical representation of the simple toy-model network of inter-bank liabilities.
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B Estimating the L matrix

Assume we have in total K constraints that include all constraints on row and column
sums as well as on the value of particular entries. Let us write these constraints as

N∑
i=1

N∑
j=1

akijlij = bk (4)

for k = 1, ..., K and akij ∈ {0, 1}.

We want to find the matrix L that has the least discrepancy to some a priori matrix
U with respect to the (generalized) cross entropy measure

C(L, U) =
N∑

i=1

N∑
j=1

lij ln(
lij
uij

) (5)

among all the matrices fulfilling (4) with the convention that lij = 0 whenever uij = 0
and 0 ln(0

0
) is defined to be 0.

The constraints for the estimations of the matrix L are not always consistent. For
instance the liabilities of all banks in sector k against all banks in sector l do typically
not equal the claims of all banks in sector l against all banks in sector k. We deal with
this problem by applying a two step procedure.

In a first step we replace an a priori matrix U reflecting only possible links between
banks by an a priori matrix V that takes actual exposure levels into account. As there are
seven sectors we partition V and U into 49 sub-matrices V kl and Ukl which describe the
liabilities of the banks in sector k against the banks in sector l and our a priori knowledge.
Given the bank balance sheet data we define uij = 1 if bank i belonging to sector k might
have liabilities against bank j belonging to sector l and uij = 0 otherwise. The (equality)
constraints are that the liabilities of bank i against the sector l equal the row sum of the
sub-matrix and that the claims of bank j against the sector k equal the column sum of
the sub-matrix, i.e. ∑

j∈l

vij = liabilities of bank i against sector l (6)

∑
i∈k

vij = claims of bank j against sector k (7)

For the matrices describing claims and liabilities within a sector (i.e. V kk) which has
a central institution we get further constraints. Suppose that bank j∗ is the central
institution. Then

vij∗ = liabilities of bank i against central institution (8)

vj∗i = claims of bank i against central institution (9)
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Though these constraints are inconsistent given our data, we use the information to
get a revised matrix V which reflects our a priori knowledge better than the initial matrix
U . Contrary to U which consists only of zeroes and ones, the entries in V are adjusted
to the actual exposure levels.16

In a second step we recombine the results of the 49 approximations V kl to get an entire
N × N improved a priori matrix V of inter-bank claims and liabilities. Now we replace
the original constraints by just requiring that the sum of all (inter-bank) liabilities of each
bank equals the row sum of L and the sum of all claims of each bank equals the column
sum of L.

N∑
j=1

lij = liabilities of bank i against all other banks (10)

N∑
i=1

lij = claims of bank j against all other banks (11)

Again we face the problem that the sum of all liabilities does not equal the sum of all
claims but corresponds to only 96% of them. By scaling the claims of each bank by 0.96
we enforce consistency.17 Given these constraints and the prior matrix V we estimate the
matrix L.

Finally we can use the information on claims and liabilities with the central bank
and with banks abroad. By adding two further nodes and by appending the rows and
columns for these nodes to the L matrix, we get a closed (consistent) system of the
inter-bank network.

16Note that the algorithm that calculates the minimum entropy entries does not converge to a solution if
data are inconsistent. Thus to arrive at the approximation V we terminate after 10 iterations immediately
after all row constraints are fulfilled.

17The remaining 4% of the claims are added to the vector e. Hence they are assumed to be fulfilled
exactly.
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